Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann–Liouville Fractional Derivative

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative

This paper deals with the investigation of the computational solutions of a unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized Riemann–Liouville fractional derivative defined by others and the space derivative of second order by the Riesz–Feller fractional derivative and adding...

متن کامل

Linear Space-time Fractional Reaction-diffusion Equation with Composite Fractional Derivative in Time

In this paper, we consider linear space-time fractional reactiondiffusion equation with composite fractional derivative as time derivative and Riesz-Feller fractional derivative with skewness zero as space derivative. We apply Laplace and Fourier transforms to obtain its solution.

متن کامل

Space-time Fractional Derivative Operators

Evolution equations for anomalous diffusion employ fractional derivatives in space and time. Linkage between the space-time variables leads to a new type of fractional derivative operator. This paper develops the mathematical foundations of those operators.

متن کامل

2 00 6 Solution of Generalized Fractional Reaction - Diffusion Equations

This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the H-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.

متن کامل

On the generalized mass transfer with a chemical reaction: Fractional derivative model

In this article using the inverse Laplace transform, we show analytical solutions for the generalized mass transfers with (and without) a chemical reaction. These transfers have been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also, using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the generalized Airy functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2014

ISSN: 2075-1680

DOI: 10.3390/axioms3030320